-- Scotts Contracting - StLouis Renewable Energy: Air Infiltration

Search This Blog

Showing posts with label Air Infiltration. Show all posts
Showing posts with label Air Infiltration. Show all posts

10.25.2010

Radiation, Convection, Conduction-Warm to Cold

Convection is the movement of air in response to heat

When air is heated, it expands, and therefore becomes less dense, so it rises. The rising warm air displaces cooler air, which sinks. When the motion is constant, it's called a convective loop.

Woodstoves and windows cause convective loops by heating or cooling (respectively) the air closest to them.

Even in homes with airtight walls and ceilings, convective loops can feel like a cool draft and be uncomfortable to the people in the room.

Convective loops can occur inside poorly insulated wall cavities, too, degrading the performance of the insulation.


Heat flows through materials by conduction

Conduction is the flow of heat energy by direct contact, through a single material or through materials that are touching.

Substances that conduct heat readily are called conductors, while substances that don't conduct heat readily are called insulators. Metal is a good conductor; foam is a good insulator. Wood falls somewhere in between.

Radiation heats objects, not air

Radiation is the transfer of heat by electromagnetic waves that travel through a vacuum (like space) or air.

Radiation cannot pass through a solid object like plywood roof sheathing. When the sun shines on asphalt shingles, heat is transferred to the plywood sheathing by conduction. After the plywood has been warmed by conduction, it can radiate heat into the attic.

Radiant barriers are materials (for example, aluminum foil) with a low-emissivity (low-e) surface. Although radiant barriers have a few applications in residential construction—they are sometimes integrated with roof sheathing—they are rarely cost-effective when compared to conventional insulation options.

-- Scott's Contracting scottscontracting@gmail.com http://www.stlouisrenewableenergy.blogspot.com http://www.stlouisrenewableenergy.com scotty@stlouisrenewableenergy.com

Insulating Roofs, Walls, and Floors

ABOUT INSULATING ROOFS, WALLS, AND FLOORS

Its not unusual for a house to have three or four types of insulation: spray foam, loose fill, rigid foam, and/or batts. Each type has multiple uses, but most also have limitations on where they can be used.

The best insulation for each location depends on a number of factors, including cost, ease of installation, available space, and the material's resistance to moisture.
All insulation types perform best when they're installed well. Some (like batts and blankets) can lose significant R-valuewith even a slightly sloppy installation.


Grading installation quality

The Residential Energy Services Network (RESNET), a national association of home-energy raters, long struggled with the question of how to estimate the R-value of walls that vary widely in performance depending on the skill of the insulation installer. Eventually, RESNET developed a useful rating system for insulation installation quality. The system is described in an article published in the January/February 2005 issue of Home Energy magazine, "Insulation Inspections for Home Energy Ratings," by Bruce Harley. The RESNET rating system recognizes three levels of insulation installation quality: Grade I, Grade II, and Grade III.



Grade I is the best installation


"In order to qualify for a Grade I rating, insulation must … fill each cavity side to side and top to bottom, with no substantial gaps or voids around obstructions (that is, blocking or bridging—as seen in the grade II photo below), and it must be split, or fitted tightly, around wiring and other services in the cavity. In general, no exterior sheathing should be visible through gaps in the material," Harley wrote. "Compression or incomplete fill amounting to 2% or less of the surface area of insulation is acceptable for Grade 1, if the compression or missing fill spaces are less than 30% of the intended fill thickness (that is, 70% or more of the intended insulation thickness is present)."

The standard for a Grade II installation is somewhat lower


"A Grade II rating represents moderate to frequent defects: gaps around wiring, electrical outlets, plumbing, other intrusions; rounded edges or 'shoulders,' larger gaps, or more significant compression. No more than 2% of the surface area of insulation missing is acceptable for Grade II."

Grade III installations are the worst
"A Grade III rating applies to any installation that is worse than Grade II." For further information on the RESNET grading system—including illustrations of good jobs and sloppy jobs—see "Assessing the Quality of Insulation Installed in New York Energy Star Labeled Homes."



ABOUT INSULATING FOUNDATIONS

Basements

Because foundations aren't really exposed to vast temperature swings, less insulation is needed there. Insulation in a basement should be chosen to do more than slow the flow of heat through these relatively stable environments; the best choices of basement insulation stop air and water, too. Basement walls and floors can be insulated on the inside or the outside, inside being the easier method for retrofits and outside being easier (in general) for new construction.

Exterior insulation choices should be moisture tolerant


Below-grade walls and floors should be insulated on the outside with, spray foam, or rigid mineral wool. Because polyisocyanurate can absorb water, it should not be used under a slab or on the outside of a foundation. Polyisocyanurate performs well, however, when used on the inside wall of a basement or crawlspace.

The most common insulation under slabs is XPS, although EPS also works if its density is adequate and if it is rated for ground contact. If the insulated slab must bear heavy loads, XPS is usually a better choice than EPS.

Closed-cell spray polyurethane foam can also be used under a slab.
Basement walls can be insulated on the exterior or interior with EPS, XPS, spray polyurethane foam, or rigid mineral wool (for example, Roxul drainboard).

To insulate a basement wall from the inside, the foam should be applied directly to the concrete, in order to keep moist interior air away from the cool, damp surface and lower the risk of condensation. To allow any accumulated moisture to dry to the inside, a semipermeable foam (EPS or XPS) is the best choice. To meet code requirements for a thermal barrier, the foam will probably need to be protected with a layer of gypsum drywall; fiberglass-faced drywall is more moisture resistant than paper-faced drywall.

Under no circumstances should fiberglass batts be used to insulate basement walls. Because fiberglass batts are air-permeable, they are unable to prevent moist interior air from contacting colder basement walls. That's why fiberglass-insulated basement walls can easily become damp and moldy.

Crawlspaces

Although some builders insulate the floor above a crawlspace (the crawlspace ceiling), most building scientists recommend building a sealed, insulated crawlspace that includes wall insulation. It usually requires less insulation (and involves fewer tricky details) to cover a short wall around the perimeter than the whole floor.

Sealed crawlspaces should be built and insulated exactly like basements.
Of course, a well-detailed insulated crawlspace needs more than just insulation. Among the other critical details are careful air-sealing of the rim-joist area and (if the crawlspace has a dirt floor) installation of a ground cover.

Slabs on grade

Some builders insulate slab perimeters without insulating under the slab. In all but the warmest climates, however, it's better to install a continuous layer of EPS, XPS, or spray polyuyrethane foam under the entire slab. Some builders modify an ICF  for use as a form for the slab that includes insulation.

If the home has in-floor radiant heat, it's especially important to include a thick layer of foam directly under the entire slab. Experts disagree on exactly how much foam to add, but they all agree that at least some is a good idea. Engineer John Straube of Building Science Corp. says that after about 4 in.—perhaps 6 in. if the slab includes radiant heat—the money is better spent elsewhere. However, Passivhaus builders sometimes install up to 14 in. of sub-slab insulation.

Soil has a measurable R-value, so it can insulate the bottom of the slab from the exterior air to some extent. But soil is also a nearly infinite heat sink. The average soil temperature varies depending on the climate and the soil depth; however, if the soil has an average temperature of 55°F and the interior of a house has an average temperature of 72°F, heat will always want to flow from the warm side of the slab toward the soil. That's why it's important to insulate under a slab.

ABOUT INSULATING ABOVE-GRADE WALLS

The strategy adopted for insulating a home's above-grade walls depends on the wall construction used.
  • Walls built from SIPs or ICFs already include insulation.
  • Concrete-block  walls are best insulated from the exterior with rigid foam or spray polyurethane foam.
  • Wood-framed walls can be insulated with cavity insulation (fiberglass batts, sprayed-in-place fiberglass, cellulose, or spray polyurethane foam), on the interior (with rigid foam board), on the exterior (with rigid foam board or spray polyurethane foam), or with a combination of approaches (for example, some cavity insulation and exterior foam sheathing).
Thermal bridging
The effective R-value of a framed wall assembly with cavity insulation is always less than the R-value of the insulation alone, as thermal bridging through the studs degrades the performance of the wall. Thermal bridging can be reduced, and the thickness of the wall increased, by:
  • adding foam sheathing to the exterior of the wall;
  • adding a layer of rigid foam under the interior drywall; or
  • building a double-stud wall with staggered studs.
Foam sheathing


The performance of any wood-framed wall will be improved by installing exterior rigid foam sheathing; the usual choices are XPS or polyisocyanurate. Although EPS can be used, it is more fragile than the other two options.
Adding foam insulation to the outside of a wall affects the wall's ability to dry out when it gets wet. Different types of foam insulation have different permeance ratings, but after a few inches they're all pretty impermeable to moisture. Most foam-sheathed walls are designed to dry to the inside. This means that interior plastic vapor barriers should never be used on foam-sheathed walls.

According to Joseph Lstiburek and Peter Baker of Building Science Corp. (see link below), adding 1 in. of R-5 insulation to a 2x6 wall insulated with fiberglass batts increases the effective R-value of the wall from 14.4 to 19.4, a 35% gain with only a 15% increase in wall thickness.

Adding 2 in. of foam raises the R-value from 14.4 to 23.8, an improvement of 65%. A layer of insulating foam on the outside of walls also reduces the risk of condensation by raising the dew point of the surface where water vapor is likely to collect.

Thick foam sheathing is safer than thin foam sheathing. To learn more about determining a safe thickness for exterior foam, see "Calculating the Minimum Thickness of Rigid Foam Sheathing."

ABOUT INSULATING FLAT CEILINGS

Flat ceilings under unconditioned attics can be insulated with fiberglass batts, blown fiberglass, or blown cellulose, but cellulose works best—especially in very cold temperatures when convective loops can degrade the performance of fiberglass. Regardless of the type of insulation used, more is always better, and it's usually an inexpensive upgrade as space is less of a limiting factor than it would be for walls.

Spray polyurethane foam can also be used to insulate a flat ceiling, although at a much higher cost than cellulose. An advantage of spray foam is that it air-seals as it insulates. With all types of attic insulation, air-sealing before insulating is almost more important than type and depth of insulation.

Attic-floor insulation should extend over the top plates of perimeter walls. To provide enough room for the necessary depth of attic insulation, be sure to specify raised-heel roof trusses.

Locating insulation at the attic floor has several advantages over locating insulation along the slope of the roof:
  • It's cheaper, easier, and faster to install thick insulation at the attic floor.
  • Unconditioned attics are easier to vent than insulated rafter bays.
  • It's easier to detect and pinpoint roof leaks when the attic is unconditioned.

ABOUT INSULATING ROOFS

Sloped ceilings and roofs can be insulated from above (by installing rigid foam on top of the roof sheathing), by installing insulation between the rafters, from below (by installing rigid foam under the rafters), or by a combination of some or all three of these insulation methods. Any of these methods will work. Although installing insulation on top of the roof sheathing is more foolproof, it's also less common.
EPS
,or polyisocyanurate foam can be installed above roof sheathing. Two or more layers of rigid foam with staggered seams can be topped with eave-to-ridge 2x4s to create vent channels, followed by a second layer of roof sheathing. Exterior insulation like this with staggered seams disrupts conductive heat flow through the framing assembly.

Installing insulation in rafter bays is risky, as interior moisture can migrate through the insulation (either by diffusion or by piggybacking with exfiltrating air) and contact the cold roof sheathing, leading to condensation. This problem can be prevented by using closed-cell spray polyurethane foam, with or without a ventilation channel under the roof sheathing.

ABOUT RETROFITTING INSULATION

Although adding insulation to an existing home is always more challenging than insulating a new home, weatherization contractors have developed many cost-effective methods of improving existing insulation levels.

It's important to manage any moisture problems in a home before engaging in air-tightening measures or insulation improvements. Inspect the home to identify any leaks or high-moisture areas, and be sure that the home is equipped with adequate mechanical ventilation.

Among the tried-and-true methods used by experienced weatherization workers:
  • To insulate a basement floor, install a continuous layer of XPS foam on top of the concrete. Top the foam with 2x4 sleepers and a plywood subfloor. If a low ceiling makes every inch critical, the sleepers can be omitted; in that case the plywood subfloor should be mechanically fastened through the foam to the concrete.
  • Basement or crawlspace walls can be insulated with interior XPS, EPS, or closed-cell spray polyurethane foam. The foam should be protected with a thermal barrier (for example, 1/2-in. drywall).
  • Above-grade frame walls can be insulated by blowing dense-packed cellulose into stud cavities through holes drilled through the siding. When insulation is complete, the holes are plugged.
  • If siding is being replaced, rigid foam or spray polyurethane foam can be installed on top of the exterior sheathing. Exterior foam retrofit jobs require considerable trim work around windows and doors, however.
  • Flat ceilings under unconditioned attics are usually easy to insulate with blown-in cellulose.
  • Improving the insulation over a sloped ceiling is often easier from the exterior than the interior. Rigid foam insulation can be added above the roof sheathing in conjunction with new roofing.
After air-sealing and insulation work is complete, the renovated home should be tested for radon. Radon levels often increase after a home has been weatherized.
If a house is undergoing extensive remodeling, it's worth considering a deep energy retrofit.
--
Scott's Contracting
scottscontracting@gmail.com
http://www.stlouisrenewableenergy.com
http://stlouisrenewableenergy.blogspot.com

Insulation: Guidelines, Facts, Applications,

ABOUT INSULATION

Thicker is better In cold weather, a puffy parka holds in your body heat. Insulation does the same thing for a house. The thicker the insulation, the better it works to reduce heat flow from the inside of a home to the outside during winter, and from outside to inside during summer.
The thermal barrier of a home should consist of a continuous layer of insulation on all sides—including the lowest floor, the exterior walls, and the ceiling or roof.

Doubling the thickness of insulation will double the insulation's R-value, cutting heat loss in half. Each time the insulation layer is doubled in thickness, this rule applies. The energy saved per year by doubling insulation from R-10 to R-20, however, will be considerably more than the energy saved by doubling insulation from R-20 to R-40, because of the law of diminishing returns. In some cases, like an attic, it's worth piling on more insulation because there is plenty of room. It's much more expensive to add that much insulation to exterior walls.

It takes more than just insulation to slow heat Stopping air leaks is just as important—maybe more important—than adding insulation. Unless builders prevent air from leaking through walls and ceilings, insulation alone won't do much good. Not only are drafts uncomfortable, but air moving through insulated cavities can cut the efficiency of the insulation by as much as 50%.
Some insulation types make good air barriers, and some don't. In all cases, it's best to keep the insulation tight to the air barrier.

THERMAL BRIDGING IS CONDUCTION IN ACTION

When there is no insulation in a roof or wall, the framing is the most insulated part of the assembly. It has the highest R-value. Softwood lumber has an R-value of 1.25 per inch, so a 2x6 stud has an R-value of almost 7. As soon as you put insulation between the studs or rafters above R-7, however, the framing becomes the weak thermal link. If the framing cavities are filled with closed-cell spray foam insulation, the insulation has an R-value of about 36. At that point, the studs or rafters become a glaring weakness in the design.

Building scientists call this phenomenon "thermal bridging" because the studs or rafters bridge the space between inside and outside the thermal envelope.

If you look for it, thermal bridging can sometimes be seen from either inside or outside. Inside, it can cause a problem called ghosting, or cold stripes behind the drywall during winter. These cold stripes can encourage condensation that leads to the accumulation of dust particles on the drywall; eventually, visible vertical stripes may form. Outside, you can see the effect of thermal bridging in snow-melt patterns on roofs and drying patterns on walls.

A continuous layer of rigid foam installed on the inside or outside of a wall or roof drastically reduces thermal bridging through the framing.

R-VALUE MEASURES HOW WELL INSULATION WORKS

Heat flows from hot to cold; it can't be stopped, but it can be slowed If we measure the rate at which heat flows through a building material or building assembly—for example, a wall or a roof—we can calculate a number (the R-value) to indicate its insulating ability. The higher a material's R-value, the better the material is at resisting heat flow through conduction, convection, and radiation (outlined above). Insulation manufacturers report R-values determined by tests following ASTMstandards (for example, ASTM C518).

Common insulation types and their R-values Residential insulation materials have R-values that range from about 3 to 7 per inch. The amount of insulation installed in any given building assembly depends on the climate, the part of the house being insulated, the project budget, and local code requirements.
  • Batts and blankets: R-3.1 to R-4.1 per in.
  • Blown-in and loose-fill insulation: R-2.6 to R-4.2 per in.
  • Rigid foam: R-3.6 to R-6.8 per in.
  • Closed-cell spray foam: R-6 to R-6.8 per in.
  • Open-cell spray foam: R-3.5 to R-3.6 per in.
Green homes go beyond code minimum
The U.S. Department of Energy has developed a list of recommended insulation levels for different climate zones. The climate zones are represented on the map (click to enlarge). Houses heated by natural gas, fuel oil, or an electric heat pump should use the R-values set out by the DOE and listed below as a base. Because electric heat is relatively expensive, houses with electric resistance heat need more insulation than shown in the table below.

In some parts of the country, minimum code requirements for insulation already (or may soon) exceed these DOE recommendations. For example, the 2009 International Residential Code requires cold-climate builders to include a minimum of R-20 wall insulation and R-15 basement wall insulation.

DOE-Department of Energy-recommended R-values for various parts of a house
ZoneAtticWall Floor Slab edge Basement wall (framing cavity insulation) Basement wall (continuous rigid insulation)
1 R-30 to R-49R-13 to R-15R-13R-4R-11R-10
2-3 R-30 to R-60R-13 to R-15R-13 to R-25R-8R-11R-10
4 R-38 to R-60R-16 to R-21R-25 to R-30R-8R-11R-4
5 R-38 to R-60R-16 to R-27R-25 to R-30R-8R-11 to R-19R-10 to R-15
6-8R-49 to R-60R-18 to R-27R-25 to R-30R-8R-11 to R-19R-10 to R-15

In any case, green builders almost always exceed minimum code requirements for insulation thickness. Many energy consultants, including Betsy Pettit and Joseph Lstiburek, now recommend that cold-climate homes include R-60 ceilings, R-40 above-grade walls, R-20 basement walls, and R-10 basement slabs.

Some builders go further; for example, an Illinois home designed to meet the rigorous German Passivhaus standard is insulated to nearly R-60 on every side—even under the slab.

AIR AND MOISTURE ARE PART OF THE PICTURE

Insulation can't work in a wind tunnel No matter what type of insulation you choose, it will perform poorly if installed in a house that is riddled with air leaks. Because many types of insulation (like loose fill and batts) work by trapping air, leaky walls, roofs, and floors mean poor thermal performance. For this reason, building scientists are fanatical about air-sealing. To get the most out of batts and blown insulation, every house needs an air barrier adjacent to or contiguous with the insulation layer.
Some types of insulation are fairly effective at stopping air infiltration. For example, when rigid foam is used as wall sheathing, it can be an effective barrier, as long as the seams are taped. Spray polyurethane foam creates a very effective air barrier.

But neither rigid foam nor spray foam addresses air leaks at the seams where different components meet, such as under the bottom plates of walls. An air barrier is only effective if all of these seams and intersections are addressed with gaskets, glues, or sealants.

Of all available insulation materials, fiberglass batts are the most permeable to air leakage—so permeable that fiberglass is used to make furnace air filters. Because it doesn't restrict air flow, fiberglass is often singled out and derided for its poor performance.

In fact, much of the criticism of fiberglass insulation is unwarranted. As long as fiberglass is installed in a house with an adequate air barrier, it will perform well. Fiberglass performs best when installed in a framing cavity (for example, a stud bay or joist bay) with an air barrier on all six sides.
Installation details for high-quality fiberglass batts have been incorporated into the insulation installation guidelines established by the home raters from the Residential Energy Services Network (RESNET).

For every location in a house, there are always several ways to create an effective air barrier. However, not all methods are equally easy to achieve. In many locations, including rim-joist areas, spray polyurethane foam is so much faster than alternative methods that its use has become almost universal among builders of high-performance homes.

Moisture can piggyback on air There's another benefit to stopping air: less moisture in roofs and walls. That's because most moisture problems in walls and roofs are caused by moisture transported by air. Vapor diffusionis a much smaller problem.

Moisture can accumulate in a wall or ceiling when warm, humid interior air leaks through cracks in the shell. When this exfiltrating air encounters a cold surface—for example, OSB wall sheathing—the moisture in the air can condense into liquid and puddle in the wall cavity. The same thing can happen in summer, when warm, humid outdoor air leaks through cracks in the wall. If the home is air-conditioned, the moisture in this infiltrating air can condense when it reaches any cool surface—drywall, ductwork, etc. The best way to limit this type of moisture migration is to install an effective air barrier. If air isn't leaking through cracks in a home's walls and ceilings, the problem is nipped in the bud.

Insulation can stop air Some insulation types act as air barriers, while others act like air filters. If you choose an insulation that doesn't stop air flow, it's important to install an adjacent air barrier material.

Best to worst at stopping airflow: Spray foam Rigid foam Cellulose Blown-in fiberglass Fiberglass batts

SHOULD INSULATION STOP VAPOR?

Vapor permeability can be a good thing or a bad thing — vapor retarders slow wetting, but they also slow drying, which may be more important. As long as you design a roof, wall, or floor assembly with these concepts in mind, then almost any type of insulation can work.

Least to most vapor permeable: Foil-faced polyisocyanurate Closed-cell spray foam XPS EPS Open-cell spray foam Cellulose Blown-in fiberglass Fiberglass batts

More on the vapor permance of insulation materials at BuildingScience.com.

INSULATE OUTSIDE THE BOX

Although residential wall insulation is traditionally installed in stud cavities, the best place to locate wall insulation is outside the frame. This exterior insulation reduces the thermal-bridging effect that studs have in a wall, because each piece of framing can act as a thermal bridge through the cavity insulation. These thermal bridges seriously degrade the performance of the wall.

The thermal-bridging effect can be partially addressed by using rigid foam sheathing—usually 1 in. or 2 in. of XPS or polyisocyanurate. Even better are wall designs that place all the insulation—6 in. to 10 in. of rigid foam—outside the framing.

When insulation is outside the frame, framing materials stay warm and dry. When stud bays are not filled with insulation, the work of electricians and plumbers is greatly simplified.
Houses with foam sheathing should not include an interior polyethylene vapor retarder.

OTHER CONSIDERATIONS

Insulation can stop air Some insulation types act as air barriers, while others act like air filters. If you choose an insulation that doesn't stop air flow, it's important to install an adjacent air barrier material.
Best to worst at stopping airflow: Spray foam Rigid foam Cellulose Blown-in fiberglass Fiberglass batts


SHOULD INSULATION STOP VAPOR?

Vapor permeability can be a good thing or a bad thing — vapor retarders slow wetting, but they also slow drying, which may be more important. As long as you design a roof, wall, or floor assembly with these concepts in mind, then almost any type of insulation can work.


Least to most vapor permeable: Foil-faced polyisocyanurate Closed-cell spray foam XPS EPS Open-cell spray foam Cellulose Blown-in fiberglass Fiberglass batts


More on the vapor permance of insulation materials at BuildingScience.com.


INSULATE OUTSIDE THE BOX

Although residential wall insulation is traditionally installed in stud cavities, the best place to locate wall insulation is outside the frame. This exterior insulation reduces the thermal-bridging effect that studs have in a wall, because each piece of framing can act as a thermal bridge through the cavity insulation. These thermal bridges seriously degrade the performance of the wall.


The thermal-bridging effect can be partially addressed by using rigid foam sheathing—usually 1 in. or 2 in. of XPS or polyisocyanurate. Even better are wall designs that place all the insulation—6 in. to 10 in. of rigid foam—outside the framing.


When insulation is outside the frame, framing materials stay warm and dry. When stud bays are not filled with insulation, the work of electricians and plumbers is greatly simplified.
Houses with foam sheathing should not include an interior polyethylene vapor retarder.


OTHER THERMAL BRIDGES


Uninsulated slab edges Window frames Wall and roof penetrations

--contact for additional details Scott's Contracting scottscontracting@gmail.com

9.13.2010

Re: Guest Post: Touch n Seal, Insulation- Local Manufacturer

Weatherize Your Home with Touch ‘n Seal Insulating Foam Sealants
Air Sealing Your Home with Insulating Foam Saves Money and Energy


Hi Scotty – I just discovered your website and blog – love it!!  I work in public relations for Fenton-based Touch ‘n Seal and wanted to submit this press release to you for publication consideration.

Thanks!
Carolyn Schinsky
Ryan Public Relations
(314) 822-9784 Office
(314) 308-1682 Cell



 NEWS RELEASE

Media Contacts:
Carolyn Schinsky / Ryan PR / 314-822-9784/ carolyn@ryan-pr.com



  Weatherize Your Home with Touch ‘n Seal Insulating Foam Sealants
Air Sealing Your Home with Insulating Foam Saves Money and Energy
 
ST. LOUIS—Sept. 13, 2010—It’s common knowledge that air leaks from drafty windows and gaps and cracks around the house can cause even a well-insulated home’s energy bills to soar.  All year long, a leaky house wastes energy and creates an often uncomfortable living environment.  However, weatherizing a home by sealing air leaks, gaps and cracks with Touch ‘n Seal insulating foam sealants and products can reduce energy loss by up to 38 percent.

“The first step in weatherizing a home is to determine where air leakage is occurring,” says Michael Sites, Product Specialist at Touch ‘n Seal.   “Some leaks around windows and doors may be obvious, but be sure to also inspect for cracks and gaps around places like electrical outlets, plumbing pipes, dryer vents and phone jacks.” 

Touch 'n Seal No-Warp FoamNo Warp Window & Door Foam Stops Drafts to Minimize Energy Loss

One of the most common sources of air leaks are drafty windows and doors.  However, Touch ‘n Seal’s gun-applied No-Warp Window & Door Insulating Sealant provides a quick and easy solution to this age-old problem.   No-Warp is a bright white expanding one-component polyurethane foam that is specially formulated for use around window and door frames – providing airtight insulation that blocks drafts, moisture and insects without bowing the frame.

“NoWarp is a great fenestration foam sealant because it expands fully to seal gaps and cracks, but won’t put undue pressure on window and door frames,” says Sites. “Most foams are inappropriate for use in these areas, because the excessive pressure can warp frames and jambs, rendering the window or door inoperable.”

 Constant Pressure Dispensing System Delivers More Spray Foam, Twice as Fast 

Air sealing with spray foam insulation creates a barrier that holds in heat in the winter months and keeps home cooler in the summer. Commonly used for weatherproofing attics, walls, ceilings and crawl spaces, spray foam provides CPDS 1000superior efficiency because it expands to fit the applied area, completely preventing drafts and air infiltration that can let dust, pollen and allergens into the structure.

Contractors can cut costs when applying spray foam insulation and enhance service offerings with Touch ‘n Seal’s new CPDS 1000 Constant Pressure Dispensing System.  The CPDS 1000 is a self-contained, portable, constant pressure spray foam system that dispenses Class I fire retardant, thermal insulating and sound dampening 2-component polyurethane spray foam – twice as fast as foam kits. As contractors around the country are discovering, the CPDS 1000 is an affordable alternative to buying or hiring a foam dispensing truck, saving both time and money.
 

With an internal air compressor, the CPDS 1000 operates on a standard 120V power supply.  “Efficiency, energy savings and environmental awareness are key factors when weatherizing a home or building,” states Sites. “The CPDS 1000 is the culmination of all these things – it provides reduced chemical waste, reduced fossil fuel consumption, reduced overall energy consumption and no ozone depleting chemicals.” 

Air-Seal & Resist Flames with Gun Foam II Sealant

Most homes have a multitude of unnoticed sources of energy loss.  Some leaks that often get overlooked are cracks and gaps in basement and foundation walls, Gun Foam II Polyurethane foam sealantdropped ceilings over cabinets and attic chases – small enclosures around ducts and plumbing - all which lead to skyrocketing energy bills.   “Air-sealing floor penetrations and air leaks in walls with Touch ‘n Seal’s Gun Foam II Insulating Sealant is a quick and easy way to prevent energy loss,” says Sites. “It provides weatherization in a variety of areas common in most residential construction.”

Gun Foam II is ideal for use at the juncture of the sill and the slab or foundation, and any penetration through floors or ceilings such as electrical lines, HVAC ducting or pipes. It fills cracks and holes in the exterior sheeting (due to poor application or penetrations made for utility services), at the corner and tee joints in framing, and any other place where air might penetrate the exterior envelope.

Touch ‘n Seal Gun Foam II Insulating Sealant is a gun-applied, bright orange one-component polyurethane foam that is more cost effective and easier to install than traditional fire blocking methods such a s gypsum, cement or fiberglass.  Though not a firestop, Gun Foam II withstands flaming over twice as long as the leading competitor, lending crucial seconds to dangerous situations.

“Weatherizing a home not only makes it more comfortable, the long term financial rewards are significant. In addition to saving money on energy bills, when Congress passed the stimulus bill earlier this year, it tripled the tax credit for weatherization home improvements through 2010,” concludes Site. 

# # #

About Touch ‘n Seal:
Convenience Products, the manufacturer of Touch ‘n Seal products, is headquartered in St. Louis, Missouri.   Touch ‘n Seal insulating foams and sealants are the benchmark for performance in commercial and industrial building and maintenance, OEM manufacturing and specialty applications. A full line of one and two-component spray foams, caulks and adhesives are available, including fire blocking foam  (ICC-ES: ESR-1926), Low Pressure Window & Door Foam, Drywall Panel Adhesives, Two-Component, Disposable Units, Mining Specialty Units, One-Component Disposable Cylinders and Fire Break Caulks.  The company also manufactures Touch ‘n Foam one-component foams for the do-it-yourself market.  For more information, visit http://www.touch-n-seal.com.

Thanks!
Carolyn Schinsky
Ryan Public Relations
(314) 822-9784 Office
(314) 308-1682 Cell



--
Scott's Contracting
scottscontracting@gmail.com


7.21.2010

Stopping Energy Loss by Bad Air Filtration

Stopping Air Filtration
by Scotty Scotts Contracting St Louis Renewable Energy
This Green Build Blog Post- 2 additional areas Bad Air can enter your home and how to stop the air.
In all the research I do on Energy Efficiency for Homes. There is one theme that presents itself in all the areas of Improving a Buildings Efficiency. Stopping Air Filtration. To make this simple and easy to understand I'm going to use Good Air and Bad Air.

Good Air: is the Air inside the house from whatever heating or cooling source you utilize.

Bad Air is: Un-Wanted Air that enters your Home from Exterior Sources

This Green Build Blog Post will center around exterior walls of your Existing Home and the various spots that air Enters your Home. In the Aticle:$1 Dollar Spent Earns $2 Dollars I mentioned sealing around the "obtrusions".
I'm now going to point out 2 additional areas Bad Air can enter your home and how to stop the air.
      • Inside the Basement or Crawl Space is the Box Sill of your Home. Seal theAreas against Bad air by caulking the Cracks and Joints where all the boards join together and the point where the Wall attaches to the Foundation-(Sill Plate, Box Sill, Floor Joists)

      • Electrical Outlets- Easy fix install: Outlet Plate Receptacle Insulating Sealer

My goal as a Green Builder is to lower the energy needed in the Homes and Business's I service. I do this by taking a whole house approach to a Home's Energy Needs by retrofitting homes and business for future Energy Efficiency. Whether you choose to DIY or Hire outside Assistance-Build Green-Scotty
-- Scott's Contracting scottscontracting@gmail.com http://stlouisrenewableenergy.blogspot.com http://www.stlouisrenewableenergy.com

Connect with Scotts Contracting

FB FB Twitter LinkedIn Blog Blog Blog Blog Pinterest