-- Scotts Contracting - StLouis Renewable Energy: Green Build

Search This Blog

Showing posts with label Green Build. Show all posts
Showing posts with label Green Build. Show all posts

4.30.2010

Retrofit reduces energy use by 60 percent

Pilot Project Super Insulation for Older Homes at Massachusetts home
You could call it an "Extreme Makeover: Energy-Efficient Edition."


In Arlington, Mass., Alex Cheimets and Cynthia Page live in a duplex that used to consume about 1,400 gallons of heating oil a year. Now their building will soon be one of the most energy-efficient in its New England neighborhood, thanks to a pilot project that retrofitted the structure with almost $100,000 worth of insulation and other products to increase energy efficiency and decrease utility costs.

The so-called Massachusetts Super Insulation Project seeks to determine the benefits and cost effectiveness of retrofitting old energy-wasting houses with insulation upgrades in key areas. Though the cost for the upgrades in the home were substantial, some of the techniques used—such as proper air-sealing and adequate moisture barriers—could easily be applied to new construction and for not much more money.

Massachusetts officials are keenly interested in the results of the project, which dovetails with the state’s efforts to become more energy-efficient. “Our governor, the state House and Senate, and the executive branch are aware that the nation’s energy strategy is not acceptable, and a big part of it is the existing housing stock,” says Philip Giudice, commissioner of the state's Department of Energy Resources.

“Nationally, buildings account for 40 percent of all energy consumption and one-third of all greenhouse gas emissions,” says Energy and Environmental Affairs Secretary Ian Bowles, who chairs Massachusetts Gov. Deval Patrick’s Zero Net Energy Buildings Task Force. “This super-insulation project in Arlington promises to be a model for the type of innovation in the building industry that the Patrick administration hopes will soon be widespread across Massachusetts.”

The public/private effort includes the state Department of Energy Resources, the local utility NStar Electric & Gas, and a number of building product sponsors.

Bowles is right, of course. As green building practices spread through the new construction market, America’s existing housing stock remains an energy-use problem. Millions of these old structures lose large amounts of energy through leaky windows, inefficient heating and cooling units, and poorly insulated walls, all of which contribute to higher-than-necessary utility bills. The 3,200-square-foot Cheimets/Page building—divided into one condo for Cheimets and his family and one for Page—was one of these structures.

At one point when home heating oil in the Massachusetts area hit $4.69 a gallon, Cheimets says, the homeowners were paying a combined total of almost $6,500 a year for heating and hot water. “We needed to replace our siding and our roof soon anyway,” Cheimets says. “As a duplex, we could simply do the minimum or we could invest now to save later. Super-insulation was the better financial investment.”


The parties in the pilot wanted to demonstrate that it’s possible to bring an existing building up to the highest standards of energy performance. In addition to reducing energy use by between 65 percent and 70 percent, the group was also interested in exploring super-insulation as part of an overall program of energy efficiency and carbon reduction. Finally, it hoped to use the Arlington, Mass., pilot project to determine cost-effective retrofit recommendations for homeowner renovations; develop experience with and collect performance results for existing structures; and establish criteria for future state programs supporting residential super-insulation projects.


Before the work commenced, the project team consulted with Somerville, Mass.-based Building Science Corp., which performed energy parametric simulations, analysis, and economic payback comparisons of various energy retrofits options.

As a result, the extensive retrofit focused on tightening the building envelope, which included new doors and the replacement of the single pane windows. The team installed double-pane Pella fiberglass windows with low-E glazing, Tyvek stucco wrap, two layers of 2-inch Dow closed-cell foam board, furring strips, and NuCedar cellular PVC siding. They ripped off the old roof and installed two layers of 3-inch foam board on the roof deck, followed by plywood sheathing, and light-colored asphalt shingles. They also sprayed Icynene open-cell foam in the attic roof and in the basement rim joists and ceiling. Finally, the team installed a heat recovery ventilator and an on-demand water heater.

Cheimets says the upgrade have made a big difference in the comfort level of the units and in the performance of the building. “I felt the difference immediately,” he says. “There are fewer drafts and no cold spots; that’s all gone away, and we have seen about a 60 percent reduction in energy use.”

As part of the pilot project, DER and NStar have installed sensors to monitor real-time oil usage as well as temperature and humidity levels inside and outside the house. “We were using about nine gallons a day before, but now we’re using three on average,” Cheimets says.

The reduction in the building’s ongoing energy use has come at a steep one-time price tag. Overall, the retrofit cost more than $90,000, and like most renovation projects, ended up being more expensive than expected in different areas.

For example, the cost for the roof replacement was first estimated at $10,000, but the price tag nearly doubled by an additional $9,000 with the addition of super-insulation. Replacing the siding was projected to run $30,000, but it increased by $41,000 with super-insulation and re-flashing the windows. An additional $6,000 went toward the installation of expanding foam in the basement ceiling; $4,000 paid for heat recovery ventilators.

“If you look at the additional cost of super insulating (compared with just doing the required work in ‘standard’ fashion) doing this work is an additional cost of $50,000, or $25,000 per family” in the two-unit duplex, according to program documents.

While the costs are high, Cheimets says they should be taken in context of retrofitting an 80-year-old house that featured 50 windows and suffered from bad insulation from the start. Doing such upgrades in new construction would be cheaper. “If you’re building a new house, you would be taking certain things into consideration like facing the roof south, using fewer windows, and decreasing the amount of angles in the roof,” he says.

John Dennis Murphey agrees that using such strategies would absolutely make such a remodel cheaper. “That’s what we’re doing now on one house,” says the principal of Chevy Chase, Md.-based Meditch Murphey Architects.

There are also other ways to save money on such a project. Murphey, for example, has eliminated conventional sheathing from his houses all together. Instead, he uses 2 x 6 studs, spray foam insulation, and metal bracing to make the studs rigid. “The studs are energy highways,” he says. He then wraps his houses in 1.5 inches of foam board, which creates a thermal break.

Instead of simply balking at the added costs, though, Murphey says builders and consumers should look at the overall project and the long-term benefits. “Energy prices have come down, but who knows where the price of oil will go,” he continues. “My bet is that they will go up. I’ll take that bet every time.”

Members of the Super Insulation Project would probably agree. It is estimated that the annual savings to the homeowners will be $2,350 to $4,000 per year. “At the current heating oil cost of approximately $2.35 a gallon, it's a 20-year payback,” program documents say. “But a few short weeks ago the price was closer to $4 a gallon, and the price of oil is likely to rise again in the coming years, dramatically shortening the payback period.”


By:Nigel F. Maynard, Senior Editor, products, at BUILDER magazine.
Contact scotty@stlouisrenewableenergy.com or scottscontracting@gmail.com for your Green Building Needs.  Addition Green Building information can be found at http://www.stlouisrenewableenergy.com/

3.29.2010

Curved Wall Build Pics

How To: Green Build A Curved Wall.
- Job Site Photos with Build Notes -
  • Step by Step Instructions for How to Build a Curved Wall.  
  • Project By Scotts Contracting, Custom Builder utilizing Green Building Techniques
View Final Photos Curved Wall Build Photos Click Here



Green Build Before Photo A


Curved Wall Before Photo B


Green Build Curved Wall Framing View.  Note: Metal Framing Conforms to Existing Structure


Curved Wall Green Build Exterior Sheeting


Curved Wall Exterior Sheeting- Build Note: 3" Relief Cuts

Green  Build Waterproofing

Curved Wall Installation of Mesh
Curved Wall with First Coat of Stucco
Final Photos View Here

Click here to Email Scotty for a Free Green Site Evaluation for the Construction of Your Next  Project






3.10.2010

Plywood vs OSB pros and cons

Greening the Shell


How plywood and OSB stack up in the search for sustainable sheathing.

Supplied by: Scott's Contracting, Green Builder St Louis "Renewable Energy" Missouri By:Fernando Pages Ruiz

Back when I started framing houses, subfloor and sheathing choices were limited to solid, spaced sheathing and a still relatively new building product, plywood. The latter was gaining market share, but many old-timers resisted the thin, bendable, sometimes delaminating sheets of cross-grained veneer.


But eventually not a single floor, wall, or roof had anything but plywood over the joists, studs, and rafters, and today the same could be said for oriented strand board (OSB). Just as with plywood, some builders regarded OSB suspiciously before it became well established.

Today, a new generation of sheet materials is pushing this category toward new levels of performance, with products made from more durable raw materials and healthier resins, and panels that combine features that address moisture control, air infiltration, and energy performance in addition to their structural functions.

Before we explore these alternatives, let’s review the pros and cons of the old warhorses, plywood and OSB, as the former has made a comeback among quality-conscious builders, and concerns over deforestation and indoor air quality have muddled the question of sheathing with either plies or strands.

PLYWOOD VS. OSB

Plywood consists of an odd number of sheets of wood, glued together with the grain of each ply in a perpendicular direction, to create a structural panel with shear strength in all directions. Plywood’s cross-grain provides strength and greater holding power for screws and nails than solid-sawn wood.

Oriented strand board (OSB) uses a similar engineering principle, but instead of creating the multidirectional structure with large sheets of wood glued together, manufacturers of OSB arrange small strands of wood (2 to 3 inches in length) into a cross-grain pattern, and then bind them into a solid, structural panel using adhesives, pressure, and heat.

From an environmental perspective, the notable difference between the two panel products comes with the natural resources required to make them. The sheets of lumber used to make plywood are peeled in thin veneers off a log with a sophisticated lathe. The logs are older and larger, and from a more limited number of tree species, than those shredded for strands of OSB. Also, the plywood peeling process leaves a spindle of wood at the center, whereas manufacturers of OSB shred the entire log.

Green building certification agencies recognize the ecological advantage of engineered lumber products, principally OSB, which is used not only to make sheathing, but also joists, rafters, and substitutes for dimensional lumber.

Nevertheless, plywood has maintained its place and has seen some gains because of its greater resistance to moisture, especially around the edges, and slight advantage in nail- and screw-holding power. Many flooring and some roofing manufacturers prefer plywood under their products because of its greater stability versus OSB in humid conditions. Miami-Dade County, Fla., prohibits the use of OSB roof sheathing, given a comparatively high failure rate once wetted during historic storms.

With the exception of Miami-Dade, all national and international building codes regard plywood and OSB as equal, and use the generic phrase “wood structural panel” to clearly denote that the code recognizes these two materials on par. The leading green certification agencies, the USGBC and the NAHB, provide points for both products.

Both products carry similar performance-based certifications, primarily from APA-The Engineered Wood Association, and the U.S. Department of Commerce Voluntary standard for Wood Based Structural Panels (PS1 and PS2) that allow consumers and inspectors to know the exposure (outdoor, indoor, or marine), strength (structural capacity), span rating over framing members (adequate for 16, 24, 32 inches on-center), surface finish quality, and, more recently, compliance with air-quality standards.

But OSB has become the clear leader in construction not so much for its ecological as economic advantages: OSB is generally several dollars per sheet cheaper.

News reports of formaldehyde concentrations in mobile homes provided to victims of Hurricane Katrina has made builders concerned about the softwood, exterior structural panels used to sheathe walls, floors, and roofs. But the moisture-resistant glues used to make exterior sheathing in the U.S. do not contain urea formaldehyde, the adhesive that has created indoor air quality concerns. According to Marilyn LeMoine, spokesperson for the APA, all of the exterior, structural panels manufactured in the U.S. today comply with or are exempt from the California Air Resources Board (CARB) Air Toxic Control Measure for Composite Wood Products, arguably one of the world’s most stringent standards regulating toxic off-gassing from building materials.

Most OSB and many plywood panels use the adhesive diphenylmethane diisocyanate (MDI) as a binder, which contains no formaldehyde and no ecological risks, says LeMoine. Some plywood and OSB contain binders made from phenol formaldehyde, which becomes stable during processing and results in such low emission levels in the finished material that these products remain exempt from all formaldehyde emission standards.

The statement “no added formaldehyde” in a wood product may sound like a hedge, but it is only because wood itself contains small measures of formaldehyde. It’s all around us, as natural as air and water. You just don’t want to breathe too much of it. How much is too much? No one knows, and hence the effort to avoid products that raise the concentrations of formaldehyde indoors beyond the background levels found naturally outside.

Some foreign-made, exterior-grade panels allegedly contain unsafe levels of formaldehyde; buying trademarked panels stamped with the U.S. Product Standard PS1 (plywood) or PS2 (OSB) ensures that you are not adding measurable risk. Panels with an APA stamp comply with the CARB standards.

GREEN CERTIFICATIONS
Beyond the structural stamps, plywood and OSB are available with certifications that confirm the product comes from a reputable source and sustainably managed forests. Although many forests are sustainably managed, the only way to provide credible proof is through independent, third-party auditing such as from FSC or SFI. Once the wood leaves the forest, a third-party, chain-of-custody certification monitors that the wood harvested is indeed the wood received by the end-user.

USGBC’s LEED program only gives points for FSC certification, but is currently considering including others; the ANSI National Green Building Standard and many other programs provide points for either.


VALUE ADDED
From a green building perspective, the most interesting developments in sheathing can be found in some new products that integrate structural features with other components, such as insulation or weather-resistive barriers.

Dow’s SIS panels, for example, combine structural lateral bracing, insulation, and a water-resistive barrier. Huber Engineered Woods’ ZIP System roof and wall sheathing offers structural panels with a proprietary coating that acts as a weather barrier.

Innovative products also are helping to stiffen floor systems and reduce squeaks. AdvanTech from Huber features advanced resins for greater water resistance than commodity OSB and plywood, according to the company, as well as greater design bending strength and stiffness.

Weyerhaeuser’s iLevel Edge and Edge Gold floor sheathing products offer similar higher performance in structural stiffness and moisture resistance.

And while roof sheathing with integral reflective radiant barriers isn’t that new, its use is growing in hot, sunny climates where solar heat absorption from roofs can really crank up cooling loads.

Various brands of fiberboard sheathing, once used as cheap filler between structural panels, now have rebranded themselves as ecological, energy-efficient, and mildly structural sheathing systems. Homasote 440, a product originally designed for sound attenuation, is being repurposed as a high-performance exterior sheathing panel made from nearly 100% post-consumer recycled cellulose fiber with a maximum shear strength of 309 pounds per square foot (compared to let-in bracing at 245 pounds).

Manufacturers are offering or exploring a number of resource-efficient sheathing alternatives, such as ERT4C’s Eco-sheet, a European plywood replacement made from a mix of recycled polymers and other recycled materials including waste electrical and electronic equipment.

And researchers at Canada’s Alberta Research Council are developing an oriented structural straw board (OSSB) product, but because of straw’s small, relatively weak fibers, this option has so far proven difficult and expensive to produce as a structural product. This group is planning to open an OSSB plant in partnership with a private manufacturer.

The sheathing category is clearly evolving quickly, driven by our expanded knowledge of building science and the technical innovations manufacturers are bringing to their products. There are some great new options for green builders these days, and I am sure we’ll see even more in the years to come.

Contact: Scott's Contracting for your Green Building Needs

2.24.2010

Combat "Greenwashing"

Provided by: Scotty, Scott's Contracting, St Louis "Renewable Energy" Missouri

Article by:Shades of Green-By:Rich Binsacca

The term “greenwash-ing” has been aroundabout as long as its root word, relied upon to ­unearth exaggerated or untrue claims (made on purpose or unwittingly) about the environmental impact or value of a given product, including homes.


But given the rapid proliferation of both green products and buildings across the country, efforts to better define the term—and ferret out offenders—are relying more on science than trial-and-error or taking a label of ingredients at face value. “The trend now is to scientifically certify green claims against a battery of standards and test methods,” says Ed ­Wyatt, program manager for material content certification at Scientific Certification Systems in Emeryville, Calif., one of an increasing number of independent entities and public agencies providing that service.

Even then, however, Wyatt and others see manufacturers and builders misusing the certifications they earn once the marketing staff takes over. “There’s no such thing as an ‘eco-friendly’ certification,” he says, recalling a recent manufacturer’s packaging claim. Far more prevalent than misleading PR, he says, are truly unsubstantiated claims for which no scientific basis exists.

To combat greenwashing, builders and specifiers are ­asking for more information and third-party verifications, and applying comprehensive, software-enabled life-cycle analysis metrics to gain a more solid footing for their projects.

They also are relying on green building program standards to guide them to the greenest ­products and building practices. “They give you a framework with which to judge if something meets the qualifications of a truly green product,” says Fort Worth, Texas–based builder Don Ferrier, such as specific water flow rates for plumbing fixtures, as verified by a third party, as opposed to something simply marketed as a low-flow faucet.

Failing to go the extra mile can put builders at risk of ­becoming greenwashers themselves. “Currently, it’s easier to greenwash a building than a product or material,” says Carl Seville, owner of Seville Consulting in Decatur, Ga. Even if a builder is diligent in his specifications, he says, the value of the greenest materials can be wasted on a poorly built and ill-­performing house. “You can’t put lipstick on a pig.”

Just as builders, architects, and specifiers are starting to hold manufacturers accountable for their environmental impact claims, home buyers are becoming more eco-savvy, says Wyatt, perhaps to the point of questioning the value of using environmentally sustainable products and materials on a 4,000-square-foot house that required more material to build and uses more energy—even if ­efficiently so—than a smaller home. “It’s a slow process, but eventually they’ll put the products in a larger context.”

Scott's Contracting, Green Builder- St Louis "Renewable Energy" Missouri

2.22.2010

Ground Source Heat Pumps, University of Missouri

U.S. Department of Energy - Energy Efficiency and Renewable Energy


Geothermal Technologies ProgramLarge Scale GSHP as Alternative Energy for American Farmers

This is a summary of a project funded on a cost-shared basis by the U.S. Department of Energy through its Geothermal Technologies Program (GTP). This work is one of several projects funded by GTP under its mission to conduct research, development, and demonstration to advance geothermal energy technologies. This summary was prepared as part of the application process by the subsequent recipient of a funding opportunity grant and is offered only as a general overview of the project's scope and direction at the time of the award.

view complete article here:http://apps1.eere.energy.gov/geothermal/projects/projects.cfm/ProjectID=109?print

Connect with Scotts Contracting

FB FB Twitter LinkedIn Blog Blog Blog Blog Pinterest